Herbpurify Product catalog
Herbpurify Product categories
Product use citation
  • 20 March 2017Front. Microbiol.

    Streptococcus suis, a Gram-positive pathogen, is widely recognized as an important agent of swine infection, and it is also known to cause a variety of zoonoses, such as meningitis, polyarthritis and pneumonia. Suilysin (SLY), an extracellular pore-forming toxin that belongs to the cholesterol-dependent cytolysin family, is an essential virulence factor of S. suis capsular type 2 (SS2). Here, we found that morin hydrate (morin), a natural flavonoid that lacks anti-SS2 activity, inhibits the hemolytic activity of SLY, protects J774 cells from SS2-induced injury and protects mice from SS2 infection. Further, by molecular modeling and mutational analysis, we found that morin binds to the “stem” domain 2 in SLY and hinders its transformation from the monomer form to the oligomer form, which causes the loss of SLY activity. Our study demonstrates that morin hinders the cell lysis activity of SLY through a novel mechanism of interrupting the heptamer formation. These findings may lead to the development of promising therapeutic candidates for the treatment of SS2 infections.


    Morin was commercially obtained from Chengdu Herbpurify CO., LTD (Chengdu, China) and was dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich, St Louis, MO, USA) to make a stock solution (40.96 mg/ml).

  • 2015 Dec 23.PubMed
  • 2015 Dec 23.PubMed
  • 18 Jun 2015Xenobiotica


    1.Huang–Lian–Jie–Du Decoction (HLJDD) is widely used for the treatment of hypertension, diabetes, inflammation and neural system diseases in clinic. In the present study, the comprehensive metabolic profile of HLJDD was demonstrated reliably and rapidly followed by the metabolic pathway analysis of six typical pure compounds (four alkaloids, one flavonoid and one iridoid) in HLJDD using LC–IT-MS combined with high resolution LC–FT-ICR-MS.

    2.Totally, 85 compounds, including 32 prototype components and 53 biotransformed metabolites were detected and characterized in the urine and feces after oral administration of HLJDD and six pure compounds to rats, respectively. Among them, 17 prototypes were identified definitely with standard references.

    3.Hydroxylation, demethylation and glucuronidation reactions of alkaloids, as well as glucuronidation and sulfonation reactions of iridoids and flavonoids, were observed as the major metabolic pathways of HLJDD. Flavonoids, iridoids and their metabolites were mainly excreted from urine. However, amount of alkaloids were detected in feces.

    4.In general, the distinctive metabolic process of three kinds of representative components in HLJDD was clarified. The in vivo metabolic network of HLJDD was demonstrated. Meanwhile, the investigation of representative pure compounds in metabolic study provided a valuable strategy to elucidate the full-scale metabolic fate of HLJDD. This might be helpful to understand the in vivo mechanism of Traditional Chinese medicine (TCM).

  • 4 August 2014Molecules

    Abstract: Corydalis Rhizoma is the dried tuber of Corydalis yanhusuo W.T. Wang which is used in traditional Chinese medicine for pain relief and blood activation. Before being used in the clinics, C. yanhusuo is traditionally processed through dry-frying or frying with vinegar, wine or salt. In this study, eleven alkaloids from Corydalis Rhizoma, namely protopine (1), α-allocryptopine (2), tetrahydrocolumbamine (3), coptisine (4), palmatine (5), berberine (6), dehydrocorydaline (7), d,l-tetrahydropalmatine (8), tetrahydroberberine (9), corydaline (10) and tetrahydrocoptisine (11) were simultaneously quantified using a newly developed high performance liquid chromatography-diode array detector (HPLC-DAD) method. The influence of vinegar and wine processing on the content of the main alkaloids of Corydalis Rhizoma was investigated. For this purpose, two common formulations with clinical application, namely the water decoction of Corydalis Rhizoma and its formula Jin Ling Zi San (combination of Corydalis Rhizoma and Toosendan Fructus) were studied. In the two water decoctions, wine and vinegar processing increased the amount of tertiary alkaloids. The differences were more pronounced for Jin Ling Zi San, in which case the content of all tertiary alkaloids (compounds 1, 2, 3, 8, 9, 10, 11) was increased by wine processing.

    Keywords: Corydalis Rhizoma; Yanhusuo; alkaloids; processing; traditional Chinese medicine


    The reference compounds protopine (1), α-allocryptopine (2), tetrahydrocolumbamine (3), coptisine (4), palmatine (5), berberine (6), DL-tetrahydropalmatine (8), tetrahydroberberine (9), corydaline (10), and tetrahydrocoptisine (11), were purchased from the National Institute for the Control of Pharmaceutical and Biological Products (Beijing, China) and Chengdu Herbpurify Co. (Chengdu, China). 

  • 26 June 2015Molecules

    Abstract: A rapid, selective and sensitive UPLC-MS/MS assay was established to determine the plasma concentrations of four steroidal saponins. Sprague-Dawley rats were allocated to four groups which were orally administered Anemarrhena asphodeloides extracts (ASE), ASE combined with macromolecular fraction (ASE-MF), ASE combined with small molecule fraction (ASE-SF) and ASE combined with small molecule and macromolecular fraction (ASE-SF-MF) containing approximately the same dose of ASE. At different time points, the concentration of timosaponin BII, anemarsaponin BIII, timosaponin AIII and timosaponin E1 in rat plasma were determined and main pharmacokinetic parameters including Cmax, Tmax, T1/2, AUC were calculated using the DAS 3.2 software package. The statistical analysis was performed using the Student’s t-test with p < 0.05 as the level of significance. MF had no effect on the pharmacokinetic behaviors and parameters of four steroidal saponins. It was found that Cmax and AUC of four steroidal saponins in group ASE-SF and ASE-SF-MF, were significantly increased compared with those in group ASE. These results indicate that SF in A. asphodeloides extracts could increase the absorption and improve the bioavailability of the steroidal saponins.


    The reference standard of timosaponin BII (purity > 98%) was purchased from Chengdu Herb Purify Co., Ltd. (Chengdu, China). ...

  • 2 March 2016Molecules



    The objectives of the present investigation were to: (1) elucidate the transport mechanism of paeoniflorin (PF) across MDCK-MDR1 monolayers; and (2) evaluate the effect of ligustilide (LIG), senkyunolide I (SENI) and senkyunolide A (SENA) on the transport of PF through blood–brain barrier so as to explore the enhancement mechanism. Transport studies of PF were performed in both directions, from apical to basolateral side (A→B) and from basolateral to apical sides (B→A). Drug concentrations were analyzed by LC-MS/MS. PF showed relatively poor absorption in MDCK-MDR1 cells, apparent permeability coefficients (Papp) ranging from 0.587 × 10?6 to 0.705 × 10?6 cm/s. In vitro experiments showed that the transport of PF in both directions was concentration dependent and not saturable. The B→A/A→B permeability ER of PF was more than 2 in the MDCK-MDR1 cells, which indicated that the transport mechanism of PF might be passive diffusion as the dominating process with the active transportation mediated mechanism involved. The increased Papp of PF in A→B direction by EDTA-Na2 suggested that PF was absorbed via the paracellular route. The P-gp inhibitor verapamil could significantly increase the transport of PF in A→B direction, and ER decreased from 2.210 to 0.690, which indicated that PF was P-gp substance. The transport of PF in A→B direction significantly increased when co-administrated with increasing concentrations of LIG, SENI and SENA. An increased cellular accumulation of Rho 123 and Western blot analysis indicated that LIG, SENI and SENA had increased the transport of PF in the BBB models attribute to down-regulate P-gp expression. A decrease in transepithelial electrical resistance (TEER) during the permeation experiment can be explained by the modulation and opening of the tight junctions caused by the permeation enhancer LIG, SENI and SENA.


    LIG(ligustilide), SENI (senkyunolide I)and SENA (senkyunolide A)were purchased from Chengdu Herbpurify Co., Ltd. (Chendu, China)

  • 15 April 2015Molecules


    Baihe Zhimu Tang (BZT) is a famous traditional Chinese medicine recipe to treat dry coughing due to yin deficiency and for moisturizing the lungs. Zhimu is an essential ingredient in BZT used to treat inflammation, fever and diabetes. The most important active components in Zhimu are flavonoids such as neomangiferin, mangiferin, and steroid saponins (e.g., timosaponin BII, anemarsaponin BIII, timosaponin AIII). The aim of this study was to compare the pharmacokinetics of mangiferin, neomangiferin, timosaponin BII, anemarsaponin BIII and timosaponin AIII in rat plasma after oral administration of BZT and Zhimu extract (ZME). A sensitive, reliable and robust LC-MS/MS method to simultaneously determine steroid saponins and flavonoids in rat plasma was successfully validated. Significant differences (p < 0.05) were found in the pharmacokinetic parameters of timosaponin BII, anemarsaponin BIII and timosaponin AIII between BZT and ZME. It was surmised that formula compatibility could significantly influence the pharmacokinetics of BZT and our study is the first to study the administration of BZT based on pharmacokinetic studies.

    Keywords: compatibility; Baihe Zhimu Tang; pharmacokinetics


    The reference standards of timosaponin BII (>98% purity) and neomangiferin (>98% purity) were purchased from Chengdu Herb Purify Co., Ltd. (Chengdu, China).

Page 1 / Total 8 FirstPrevNextLastGoto
All rights reserved Chengdu Herbpurify CO.,LTD
Address: Room709-C1,Incubator Building, Tianfu Life Science Park No.88,Keyuan Road,Gaoxin District,Chengdu City,Sichuan Prov,China
Phone:0086-028-85249238  18981717076 FAX:0086-28-85377358 E-mail:ruifensi@herbpurify.com Skype:herbpurify    Site Map
Technical Support:chem960